Optimal Experiment Design for Thermal Characterization of Functionally Graded Materials

Kevin D. Cole Mechanical Engineering Department University of Nebraska—Lincoln

Outline

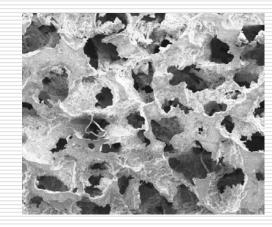
- Motivation: Design experiments to measure thermal properties of functionally-graded (FG) materials.
- □ Simulation studies of transient heating:
 - In FG material with k(x), conduction only;
- Summary and future work.

Functionally-graded (FG) materials

- Material (or structure) with properties that vary though the thickness
- Property variations are of interest to improve thermal/stress performance
- FG materials include composites, built-up structures, metal foams, or any structure with variations designed into the material

Fabrication Methods for FG Materials

- Layer processing
 Mechanical lamination
 Spraying
 - •Vapor deposition
- •Bulk processing •Powder mixing and sintering •Fibers
- •Diffusion processing
- •Melt processing

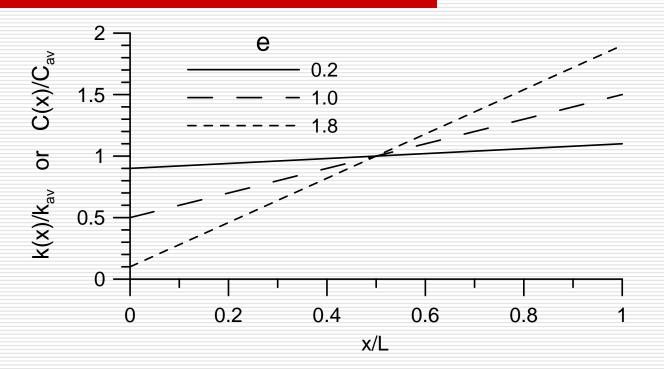


Example: porous metal foam with spatially-varying porosity.

Motivation for current project

- Functionally graded (FG) materials are being studied for thermal insulation (for aero-thermal protection or cryogenic tanks)
- Once fabricated, does a delivered material meet the specifications?
- Seek procedure to choose an experiment to measure spatially-varying thermal properties of FG materials (accurate; non-invasive; cost effective)

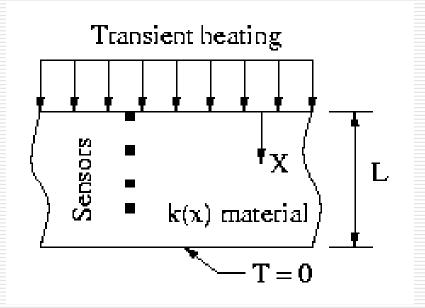
FG Material, linear variation of k(x)



□ $k(x) = k_{av} [1 + e(x/L - 0.5)]$ (W/m/K) □ $C(x) = C_{av} [1 + e(x/L - 0.5)]$ (J/m³/K)

Transient experiment for thermal property measurement.

- On-off heating on one side
- Fixed temperature on other side
- One or more temperature sensors
- Collect data during heating and continue while unheated.
- Analyze data for desired properties with parameter estimation.



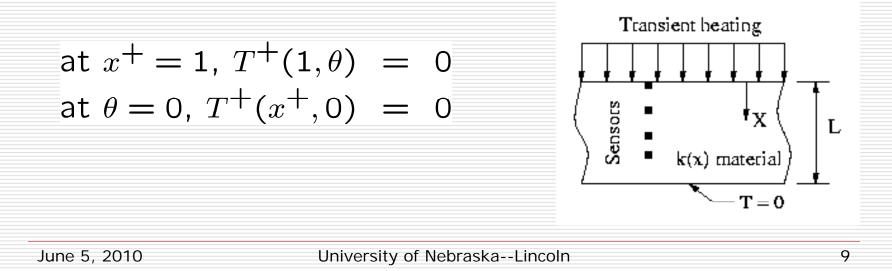
Parameter Estimation

- Goal: given experimental data Y_j (θ_i), find parameters (k_{av}, C_{av}, e).
- □ Need model: given (k_{av}, C_{av}, e) , compute $T_j(\theta_i)$. (j ... sensor; i ... time)
- □ Minimize the sum-of-square of error $[Y_j(\theta_i) T_j(\theta_i)]^2$
- Minimization requires derivatives of the model temperatures with respect to the parameters (sensitivity coefficients).

Computational Model (solution method: finite difference)

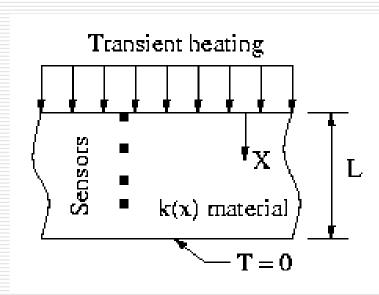
$$\frac{\partial}{\partial x^{+}} \left(k^{+} \frac{\partial T^{+}}{\partial x^{+}} \right) = C^{+} \frac{\partial T^{+}}{\partial \theta}; \qquad 0 < x^{+} < 1$$

at $x^{+} = 0, \ -k^{+}(0) \frac{\partial T^{+}}{\partial x^{+}} = \begin{cases} 1, \ \theta < \theta_{h} \\ 0, \ \theta > \theta_{h} \end{cases}$



Seek best experiment by varying:

- Number and location of sensors
- Duration of heating period
- Duration of entire data record
- Location of heating (x=0 or x=L)
- Apply to several different spatial variations (slope, e)

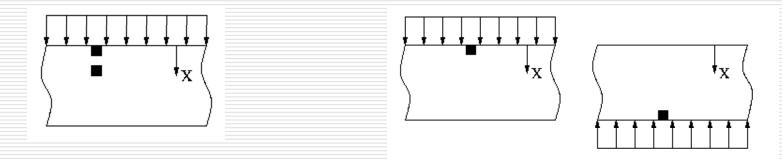


Compare 2 Experimental Designs

Experiment 1: Heat at x=0 with two sensors: •Sensor at x=0.

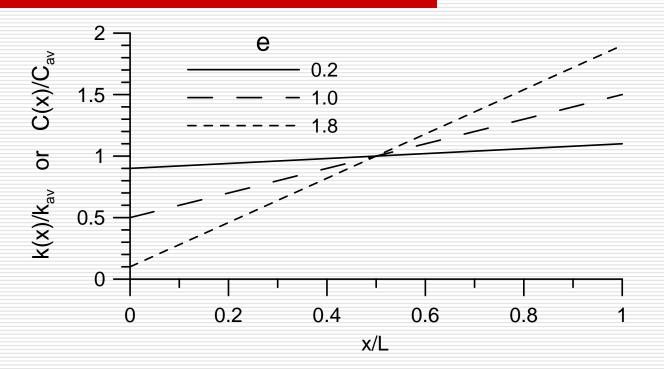
•Sensor at x=L/4.

Experiment 2: Two heating events with one sensor each: •Heat/sensor at x=0. •Heat/sensor at x=L.



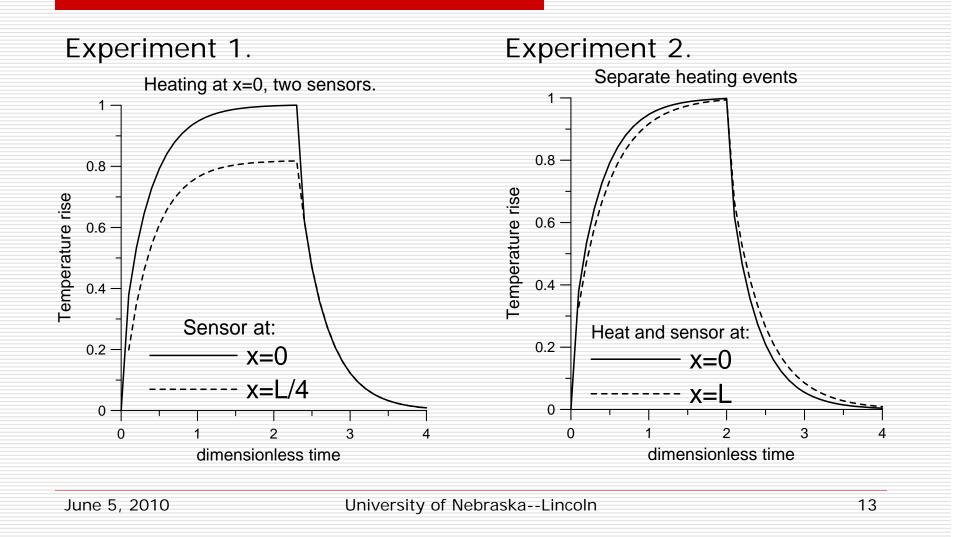
Seek optimum for each experimental design by varying heat duration and data duration, for several values of slope e.

FG Material, linear variation of k(x)



□ $k(x) = k_{av} [1 + e(x/L - 0.5)]$ (W/m/K) □ $C(x) = C_{av} [1 + e(x/L - 0.5)]$ (J/m³/K)

Calculated temperatures (e = 0.2)



Sensitivity coefficients

 Minimization of error requires sensitivity coefficients (derivatives wrt parameters b_k)

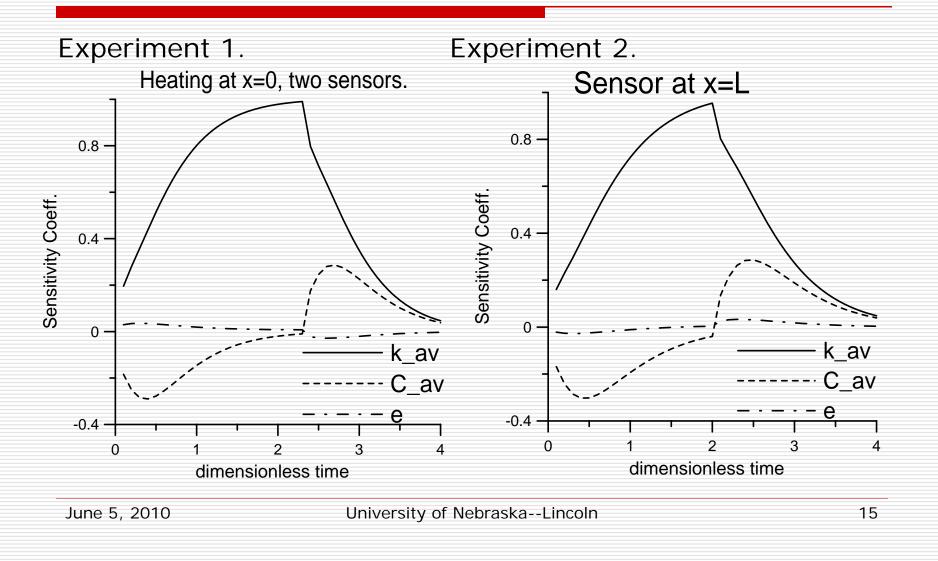
$$X_{jk}(i) = b_k \frac{\partial T_j^+}{\partial b_k}$$

which are computed from the model:

$$X_{jk}(i) \approx b_k \frac{[T_{ij}^+((1+\epsilon)b_k) - T_{ij}^+(b_k)]}{\epsilon b_k}$$

and assembled into matrix X.

Sensitivity Coefficients (e = 0.2)



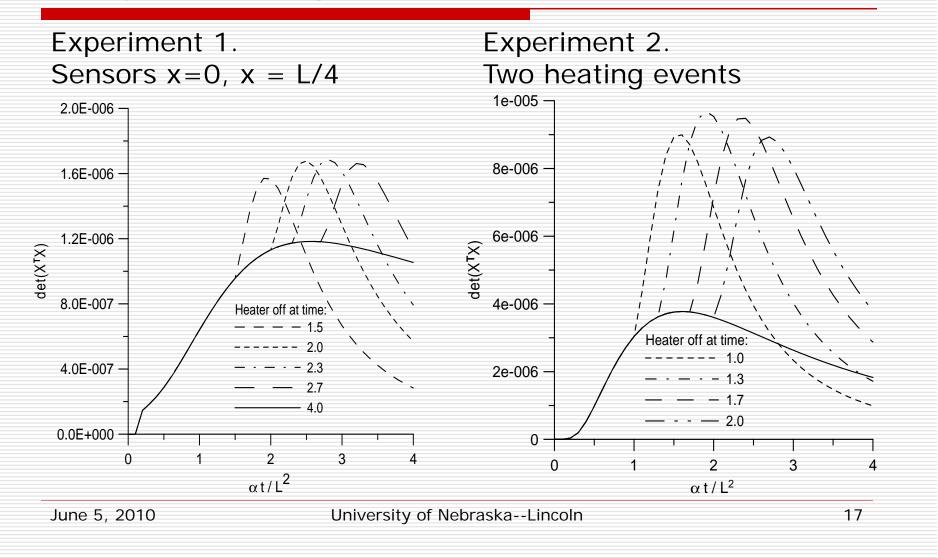
Sensitivities and Optimality

- Sensitivities should be as large as possible.
 - Sensitivities must be linearly independent to estimate two or more parameters.
- Given sensitivity matrix x, the experiment with the "largest" and "most independent" sensitivities occurs at the maximum value of the determinant of matrix x^T x:

$$D = \frac{1}{s n (T_{max}^+)^2} det(\mathbf{X}^T \mathbf{X})$$

(s - sensors; n - time steps;)

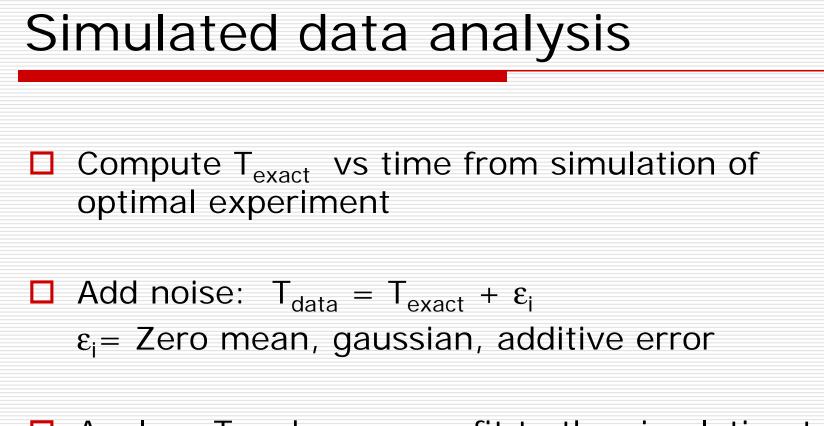
Optimality Criterion (for e = 0.2), vary heating duration.



Optimal Experiments.

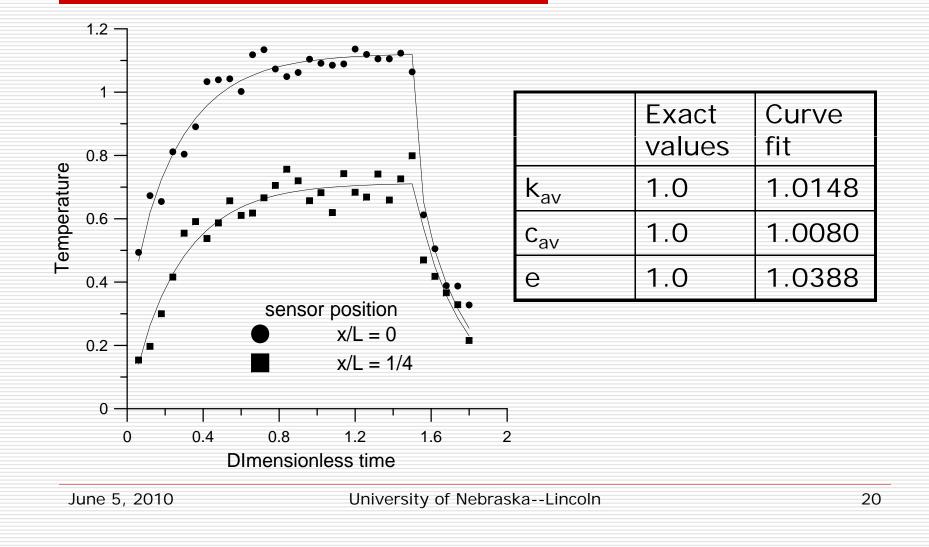
Experiment Design	е	Heat time	Data time	Max. D value
1. Heat x=0,	0.2	2.3	2.8	1.7 E-06
sensors at	1.0	1.5	1.8	8.7 E-05
x=0, x=L/4.	1.8	1.5	1.7	1.2 E-03
2. Two heat	0.2	1.3	1.9	9.5 E-06
events, one	1.0	1.7	2.2	24. E-05
sensor each.	1.8	1.3	1.5	2.2 E-03
3. k = const.		2.25	3.0	2.0 E-01

June 5, 2010



Analyze T_{data} by a curve fit to the simulation to estimate parameters k_{av}, c_{av}, e.

Simulate Experiment 1, two sensors, error 5% variance



Analysis of optimum experiments (one heat event and two sensors)

slope	Error	% error	% error	% error
е	variance	in k _{av}	in c _{av}	in e
0.2	1%	0.22	0.92	13.9
1.0	1%	0.41	0.79	0.27
1.8	1%	0.39	0.14	0.14
0.2	5%	2.68	7.13	*
1.0	5%	1.48	0.80	3.88
1.8	5%	0.42	3.00	0.33

* No convergence

June 5, 2010

Discuss optimal experiments for FG materials with k(x) linear

- Best experiment combines two heat events, heat/sensor at x=0 and at x=L. No interior sensors are needed, non-destructive.
- Length of data record is critical, as optimality criterion D=det(X^TX) has a very narrow peak.
- Optimal heat duration and data record duration vary somewhat with spatial-variation slope, e.
- Possible to fit three parameters (k_{av}, c_{av}, e) with data from two sensors.
- More accurate parameter estimates are possible for materials with larger variation in k (larger e); it is easier to "see" larger-e values.

Summary

- Design of experiments for finding thermal properties of a functional-graded material with k(x) across the thickness.
- Sensitivity to parameters is used to construct optimality criterion det(X^TX) for measurement of thermal properties.
- \Box Applied to material with linear variation of k(x).
- Presented results of simulated data analysis.

Future work.

- Investigate additional materials
 - Other k(x) distributions (conduction only)
 - Metal foams (conduction and radiation)
- Automate the search for largest value of optimality criterion det(X^TX), to determine the best experimental conditions.
- Is the optimum D-value large enough? Simulate additional cases to estimate parameters from noisecontaining data.
- Perform an actual experiment to obtain data on a suitable material; analyze laboratory data.

Acknowledgement

The work was carried out with help from

- Paul Crittenden, post doc
- Imran Amirani, M.S. student
- Ryan Sneed, undergraduate student

Funding provided by:

- NASA Langley grant NAG-1-01087, contract supervised by Max Blosser
- University of Nebraska